State of the Planet

News from the Columbia Climate School

, , ,

Settling in to Work and Life in Barrow

The Barrow Arctic Research Center, home of our lab space.
The Barrow Arctic Research Center, which houses our laboratory.

While I arrived in Barrow, Alaska on Tuesday, Lamont-Doherty Earth Observatory scientists Andy Juhl and Craig Aumack, and graduate student Kyle Kinzler from Arizona State University, got here one week ago. They took a few days to unpack and set up their lab (everything they need to work here must be shipped to Barrow in advance), scout locations for sampling on the ice and ensure that their tools and equipment are working properly before they begin their fieldwork.

Our team alternates days in the lab and days on the ice. The lab space we’re using is a bit north of town at the Barrow Arctic Research Center (BARC), a newly constructed facility where the National Science Foundation leases space for its researchers. Scientists wishing to work in and around Barrow can use BARC as their home base. At the moment the building is fairly quiet as the only other occupants are a group of international graduate students being trained on how to conduct sea ice research.

Today was a lab day, where recently collected samples were processed, experiments performed and preliminary data analyzed. Fieldwork is just the beginning of a research process that can take several years. The majority of the samples and data collected here won’t be examined until scientists are back at their respective institutes, where it can take months or longer to analyze all of their samples and data and then write up the results. But, to ensure that their research is on the right track, a few experiments and analyses are done while in Barrow.

Craig holds a bag containing water from a melted ice core that he drilled a few days ago. The water looks murky due to the presence of algae.
Craig holds a bag containing water from a melted ice core that he drilled a few days ago. The water looks murky due to the presence of algae.

This afternoon I spent time in a zero degree walk-in freezer talking with Craig Aumack, who’s conducting experiments to learn more about the organisms living in Arctic sea ice. Each year, as soon as any light is available, algae start growing in the ice and continue to bloom through the onset of spring and the Arctic’s long summer days. Algae prefer to live in the bottom of the ice, because, like all plants, they need light and nutrients, and these are plentiful at the sea-ice interface.

Craig’s experiments are called settling experiments, and these help him learn what happens to the organic materials and organisms living in the sea ice when they’re released into the ocean. Craig wants to determine the rate at which these particles sink down through the water column; this information reveals whether particles are more likely to be consumed while falling through the water column or once they accumulate on the seafloor. Particles that sink slowly are more likely to be eaten by zooplankton, tiny marine animals, while those that fall to the bottom will be consumed by worms, crustaceans and mollusks.

Settling experiments must be done in a freezer because organisms that call ice home would quickly die if exposed to a 70-degree temperature difference. Though extreme temperatures can also cause humans to become a bit uncomfortable, we’re able to don parkas and puffy jackets to protect us; algae don’t have this luxury. So, Craig replicates the conditions in which ice algae thrive, and bundled up, works in a frigid environment.

Andy Juhl was happy to explain this experiment and their research further, fortunately outside of the freezer. “There’s a whole ecosystem living inside the ice. Ultimately, we want to know what the dynamics of this special ecosystem are and how this is connected to the rest of Arctic ecosystem,” he said.

diatom
A diatom, one form of single celled, microscopic Arctic algae, as seen under a flourescence microscope. Photo: Kyle Kinzler

“We know the Arctic is changing very rapidly in terms of ice cover, duration of ice cover and extent of ice cover. One of the things we need to understand if we’re going to try to predict what will happen to the Arctic in the future is the ice ecosystem and its importance to the functioning of the entire Arctic,” Andy said.

Tomorrow, Thursday, we head out onto the ice to sample. This afternoon I received my land use permit from the Ukpeaġvik Iñupiat Corporation, the organization that owns the land we’ll be working on, and successfully completed my snowmobile training, so I’m officially ready for fieldwork.

For more information on this project, visit http://lifeintheice.wordpress.com or follow Lamont-Doherty Earth Observatory and the hashtag #LDEOarctic on Twitter.

Science for the Planet: In these short video explainers, discover how scientists and scholars across the Columbia Climate School are working to understand the effects of climate change and help solve the crisis.
Subscribe
Notify of
guest

0 Comments
Inline Feedbacks
View all comments