Ice Capades

by | 5.17.2013 at 6:24am
Follow us on Facebook or Twitter
Scientist Andy Juhl makes notes at our first field site about snow depth and distribution.

Scientist Andy Juhl makes notes at our first field site about snow depth and distribution.

Fieldwork is exciting and inspiring, leading scientists to new ideas, places and observations about how the world works. Spring on Alaska’s North Slope provides an especially productive environment for fieldwork. When the sun never sets, it’s easy to linger in the field and the lab long into the well-lit night.

Our team spent about six hours on the Arctic sea ice Thursday, enjoying blue skies and temperatures in the low teens, while making observations, maintaining sampling sites and taking measurements. Most of our time was spent at two different field sites Andy and Craig established near Point Barrow, a narrow spit of land that’s the northernmost point in the United States. Traveling to these sites involves loading up two sleds with all of the sampling equipment, hitching the sleds to snowmobiles and carefully traversing the sea ice on said snowmobiles, which, I discovered today, is extremely fun.

Andy, Kyle and Craig prepare to finish drilling a hole in the ice.

Andy, Kyle and Craig prepare to finish drilling a hole in the ice.

One of the research questions Andy and Craig are exploring in Barrow is how the amount of snow covering sea ice might affect the diverse species of algae living in and just below the ice. A thin snow cover allows more sunlight to reach the algae; a thicker snow cover creates a darker environment. As in any ecosystem, many different species are competing for light and nutrients. For this study, Andy and Craig want to see how changing one factor in the Arctic sea ice ecosystem – the amount of available light – might allow some organisms to grow better and become more prevalent than others.

Last week Andy and Craig set up an artificial snow gradient at our first field site, where different snow depths cover the ice in a small, isolated area. Ice cores were drilled here on their first day and Andy and Craig will repeat this same exercise later in May. Collecting data over these specific time intervals will enable them to see how snow depth and distribution affect the community of organisms living in the ice. This information will provide an idea of what might happen to the entire ecosystem if more light is introduced via less snow cover in the future.

At the second field site, scientists used an auger to drill a hole in the ice, which is currently about four feet thick. Then a camera was lowered into the hole, with a live feed to a computer so we could see what was happening in the sea directly below us. A thick layer of algae covered the underside of the sea ice and once lowered eight meters to the sea floor, the camera revealed isopods (small crustaceans), jellyfish and a few unrecognizable members of the Arctic marine ecosystem.

Lowering the camera into the -2F sea.

Lowering the camera into the -2C sea.

“We do the camera work because there’s no substitute for seeing the ecosystem intact. We need to get cores in order to collect samples, but you get a really different impression of the ecosystem with the camera,“ Andy explained.

Later in the afternoon we searched the ice for a sampling station Andy and Craig used last year, but were unable to find it. The area had become covered with huge pressure ridges, large fragments of ice that pile up when sheets of ice collide, which are hard to cross on a snowmobile. At one point fresh polar bear tracks meandered among the ridges, but we never caught sight of the bear who made them.

For more information on this project, visit http://lifeintheice.wordpress.com or follow Lamont-Doherty Earth Observatory and the hashtag #LDEOarctic on Twitter.

Follow us on Facebook or Twitter

Comment Using Social Media

Comment