The ‘Skinny’ on Antarctic Sea Ice

by | 11.1.2012 at 4:48pm
Follow us on Facebook or Twitter

Sea Ice on the left, touching up against an ice shelf along West Antarctica. (Photo from the camera in the belly of the plane). The plane is flying at ~1500 ft. of elevation – the estimated field of view is ~450 meters.

One piece of our IceBridge mission focuses on sea ice here in the south. Sea ice in the northern regions has been reducing at dramatic rates over the last decade, setting a new record just this year, but the story in the south is not so clear. In fact, there has been a buzz that Antarctic sea ice extent may just be increasing while the Arctic ice is decreasing. The issue is a complex one and involves not just sea ice extent (how much surface area the ice covers) but sea ice thickness (total volume of ice). While the extent of Antarctic sea ice is increasing, we also need to understand how the thickness is varying.

One of the trickier items in measuring sea ice is making the raw measurements of thicker and thinner ice. With only satellite measurements it is hard to get the true thickness of the ice, since the surface of the ice is often covered with snow that needs to be accounted for in our calculations. Using the snow radar on the IceBridge mission we can work out how much of what the satellite is measuring is actually snow.

Bellinghausen sea ice labeled to show open water (dark areas), dark grey ice (less than 15 cm thick) and thicker light grey ice. Image from the NASA IceBridge camera.


The Bellinghausen Sea sits just to the west of the Antarctic peninsula and in the southern winter months is generally covered with sea ice. We have flown two Bellinghausen sea missions this season – one to map out to the furthest edges and another to looks at the gradient of sea ice change as you move away from the coast or shoreline. The second Bellinghausen mission was important because in running profiles in and out from the coast it allowed us to measure how ice thickness patterns vary with distance from the shore. We need to understand these patterns of ice thickness in the southern end of the planet, how they may be changing and what connection they have to the climate system.

An pice of land ice that has separated as an iceberg (shows with a bluish coloring, approximately 30-40 meters in length) travels trapped amidst the floating sea ice in Bellinghausen Sea, Antarctica.


There has been much less study done on southern sea ice than northern sea ice because we get very few opportunities to make the measurements we need. We have two high priority flights to the Weddell Sea (on the eastern side of the Antarctic peninsula), but so far it has not been possible to fly them because of the weather. Hopefully before the end of this season we will be able to fly both these flights and fill in more pieces in the sea ice story.

For more on the IceBridge project visit:

http://www.nasa.gov/mission_pages/icebridge/index.html

http://www.ldeo.columbia.edu/res/pi/icebridge/

Follow us on Facebook or Twitter

Comment Using Social Media

Comment